Telegram Group & Telegram Channel
Forwarded from Machinelearning
✔️ Книга+практика : Understanding Deep Learning

Книга “Understanding Deep Learning” посвящена идеям и принципам, лежащим в основе глубокого обучения. Подача материала построена таким образом, чтобы читатель мог понять материал настолько эффективно, насколько это возможно. Для читателей, желающих углубиться в изучение, в каждой главе приведены соответствующие задачи, записные книжки по Python и подробные справочные материалы.

В первой части книги представлены модели глубокого обучения и обсуждается, как их обучать, измерять их производительность и улучшать эту производительность.

В следующей части рассматриваются архитектуры, которые специализируются на изображениях, тексте и графических данных. Для свободного понимания этих двух глав требуется понимать принципы линейной алгебры, матанализа и теории вероятностей.

Последующие части книги посвящены генеративным моделям и методике обучения с подкреплением. Эти главы требуют больших знаний в области теории вероятностей и математического анализа.

В последней главе обсуждается этика искусственного интеллекта и призыв к практикующим инженерам задуматься о моральных последствиях своей работы.

Автор книги: Simon J. D. Prince - почетный профессор информатики в Университете Bath (Великобритания) , со-автор более 80 опубликованных исследований в области ML.
Научный сотрудник, специализирующийся на искусственном интеллекте и глубоком обучении, он руководил группами ресерча в Anthropics Technologies Ltd, Borealis AI и других компаниях.

Дополнительно, на отдельном сайте книги, читателям доступны:

🟢ответы на наиболее частые вопросы студентов;
🟢ipynb - ноутбуки для практических занятий по материалам книги;
🟢интерактивные иллюстрации по темам;
🟢презентации по каждой главе для преподавателей, которые захотят построить свое обучение на содержимом книги;
🟢большой список статей по 12 направлениям для продолжения обучения после прочтения книги: AI Theory, Transformers & LLMs, Unsupervised learning, Natural language processing, Computer vision и др.

▶️Дата последней актуализации книги : 28 августа 2024 года.


📌Стоимость: бесплатно


🟡Сайт книги
🖥Github


@ai_machinelearning_big_data

#AI #ML #Book
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/golang_books/768
Create:
Last Update:

✔️ Книга+практика : Understanding Deep Learning

Книга “Understanding Deep Learning” посвящена идеям и принципам, лежащим в основе глубокого обучения. Подача материала построена таким образом, чтобы читатель мог понять материал настолько эффективно, насколько это возможно. Для читателей, желающих углубиться в изучение, в каждой главе приведены соответствующие задачи, записные книжки по Python и подробные справочные материалы.

В первой части книги представлены модели глубокого обучения и обсуждается, как их обучать, измерять их производительность и улучшать эту производительность.

В следующей части рассматриваются архитектуры, которые специализируются на изображениях, тексте и графических данных. Для свободного понимания этих двух глав требуется понимать принципы линейной алгебры, матанализа и теории вероятностей.

Последующие части книги посвящены генеративным моделям и методике обучения с подкреплением. Эти главы требуют больших знаний в области теории вероятностей и математического анализа.

В последней главе обсуждается этика искусственного интеллекта и призыв к практикующим инженерам задуматься о моральных последствиях своей работы.

Автор книги: Simon J. D. Prince - почетный профессор информатики в Университете Bath (Великобритания) , со-автор более 80 опубликованных исследований в области ML.
Научный сотрудник, специализирующийся на искусственном интеллекте и глубоком обучении, он руководил группами ресерча в Anthropics Technologies Ltd, Borealis AI и других компаниях.

Дополнительно, на отдельном сайте книги, читателям доступны:

🟢ответы на наиболее частые вопросы студентов;
🟢ipynb - ноутбуки для практических занятий по материалам книги;
🟢интерактивные иллюстрации по темам;
🟢презентации по каждой главе для преподавателей, которые захотят построить свое обучение на содержимом книги;
🟢большой список статей по 12 направлениям для продолжения обучения после прочтения книги: AI Theory, Transformers & LLMs, Unsupervised learning, Natural language processing, Computer vision и др.

▶️Дата последней актуализации книги : 28 августа 2024 года.


📌Стоимость: бесплатно


🟡Сайт книги
🖥Github


@ai_machinelearning_big_data

#AI #ML #Book

BY Golang Books






Share with your friend now:
tg-me.com/golang_books/768

View MORE
Open in Telegram


Golang Books Telegram | DID YOU KNOW?

Date: |

What is Telegram?

Telegram’s stand out feature is its encryption scheme that keeps messages and media secure in transit. The scheme is known as MTProto and is based on 256-bit AES encryption, RSA encryption, and Diffie-Hellman key exchange. The result of this complicated and technical-sounding jargon? A messaging service that claims to keep your data safe.Why do we say claims? When dealing with security, you always want to leave room for scrutiny, and a few cryptography experts have criticized the system. Overall, any level of encryption is better than none, but a level of discretion should always be observed with any online connected system, even Telegram.

Importantly, that investor viewpoint is not new. It cycles in when conditions are right (and vice versa). It also brings the ineffective warnings of an overpriced market with it.Looking toward a good 2022 stock market, there is no apparent reason to expect these issues to change.

Golang Books from id


Telegram Golang Books
FROM USA